Identification and characterization of a novel-type ferric siderophore reductase from a gram-positive extremophile.
نویسندگان
چکیده
Iron limitation is one major constraint of microbial life, and a plethora of microbes use siderophores for high affinity iron acquisition. Because specific enzymes for reductive iron release in gram-positives are not known, we searched Firmicute genomes and found a novel association pattern of putative ferric siderophore reductases and uptake genes. The reductase from the schizokinen-producing alkaliphile Bacillus halodurans was found to cluster with a ferric citrate-hydroxamate uptake system and to catalyze iron release efficiently from Fe[III]-dicitrate, Fe[III]-schizokinen, Fe[III]-aerobactin, and ferrichrome. The gene was hence named fchR for ferric citrate and hydroxamate reductase. The tightly bound [2Fe-2S] cofactor of FchR was identified by UV-visible, EPR, CD spectroscopy, and mass spectrometry. Iron release kinetics were determined with several substrates by using ferredoxin as electron donor. Catalytic efficiencies were strongly enhanced in the presence of an iron-sulfur scaffold protein scavenging the released ferrous iron. Competitive inhibition of FchR was observed with Ga(III)-charged siderophores with K(i) values in the micromolar range. The principal catalytic mechanism was found to couple increasing K(m) and K(D) values of substrate binding with increasing k(cat) values, resulting in high catalytic efficiencies over a wide redox range. Physiologically, a chromosomal fchR deletion led to strongly impaired growth during iron limitation even in the presence of ferric siderophores. Inductively coupled plasma-MS analysis of ΔfchR revealed intracellular iron accumulation, indicating that the ferric substrates were not efficiently metabolized. We further show that FchR can be efficiently inhibited by redox-inert siderophore mimics in vivo, suggesting that substrate-specific ferric siderophore reductases may present future targets for microbial pathogen control.
منابع مشابه
The Staphylococcus aureus siderophore receptor HtsA undergoes localized conformational changes to enclose staphyloferrin A in an arginine-rich binding pocket.
Staphylococcus aureus uses several efficient iron acquisition strategies to overcome iron limitation. Recently, the genetic locus encoding biosynthetic enzymes for the iron chelating molecule, staphyloferrin A (SA), was determined. S. aureus synthesizes and secretes SA into its environment to scavenge iron. The membrane-anchored ATP binding cassette-binding protein, HtsA, receives the ferric-ch...
متن کاملPositive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
Ferric siderophore receptors are components of high-affinity iron-chelate transport systems in gram-negative bacteria. The genes encoding these receptors are generally regulated by repression. Here, we show that the ferrichrome receptor gene bll4920 and four additional putative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by the regulatory protein Irr,...
متن کاملCrystal structure of the antibiotic albomycin in complex with the outer membrane transporter FhuA.
One alternative method for drug delivery involves the use of siderophore-antibiotic conjugates. These compounds represent a specific means by which potent antimicrobial agents, covalently linked to iron-chelating siderophores, can be actively transported across the outer membrane of gram-negative bacteria. These "Trojan Horse" antibiotics may prove useful as an efficient means to combat multi-d...
متن کاملProduction ofHalothermotolerant α-Amylase from aModerately Halophilic Bacterium, NesterenkoniaStrain F.
Production of extracellular amylase was demonstrated under conditions of high salinity in aerobically cultivated culture of a newly isolated moderately halophilic Gram-positive coccus, designated strain F in basal medium containing peptone from meat, yeast extract, NaCl (7% w/v) and starch. Biochemical and physiological characterization along with 16S rRNA sequence analysis placed F in the genu...
متن کاملCoordination Chemistry of Microbial Iron Transport
This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 286 3 شماره
صفحات -
تاریخ انتشار 2011